
Incentive Analysis of Approximately Efficient Allocation
Algorithms

(Extended Abstract)
Yevgeniy Vorobeychik∗ Yagil Engel†

ABSTRACT
We present a series of results providing evidence that the in-
centive problem with approximate VCG-based mechanisms
is often not very severe. Our first result uses average-case
analysis to show that if an algorithm can solve the allocation
problem well for a large proportion of instances, incentives
to lie essentially disappear. We next show that even if such
incentives exist, a simple enhancement of the mechanism
makes it unlikely that any player will find an improving de-
viation. Additionally, we offer a simulation-based technique
to verify empirically the incentive properties of an arbitrary
approximation algorithm and demonstrate it in a specific
instance using combinatorial auction data.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics

Keywords
Algorithmic mechanism design, combinatorial auctions, VCG

1. PRELIMINARIES
Let the utility function of a player be ui(ti, o, pi) = vi(ti, o)+

pi, where vi(ti, o) is the value that player i with type ti

has for outcome o, and pi is his payment. A mechanism
chooses an outcome o and assigns the payments pi for all
players i for a given joint report of types t ∈ T . Define so-
cial welfare to be V (t, o) =

P
i∈I vi(ti, o) and let V ∗(t) =

maxo∈O

P
i∈I vi(ti, o) be the maximum welfare achieved for

a type profile t. Let V ∗ = supt∈T V ∗(t). It is well known
that optimal allocation can be achieved as a truthful dom-
inant strategy equilibrium by using Groves payments [4],

∗University of Pennsylvania, Computer and Information Sci-
ence Department; yev@seas.upenn.edu
†Technion, Industrial Engineering and Management; yag-
ile@ie.technion.ac.il

Cite as: Incentive Analysis of Approximately Efficient Allocation Algo-
rithms (Extended Abstract), Yevgeniy Vorobeychik and Yagil Engel, Proc.
of 9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and
Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

with pi(t) =
P

j �=i vj(tj , o
∗(t)) + hi(t−i). Here hi is an ar-

bitrary function of the types reported by other players; for
simplicity, we set it to 0.

Let g : T → O be an algorithm for computing approx-
imately efficient allocation. Since g may compute only a
suboptimal allocation, we let Vg(t) be the welfare at the al-
location g(t), that is Vg(t) =

P
i∈I vi(ti, g(t)). Define VCG-

based payments by pg
i (t) =

P
j �=i vj(tj , g(t)) + hi(t−i). Ap-

proximation algorithms typically include a guarantee with
respect to the quality of approximation they provide. We
say that g(·) is an α-approximation if V ∗(t) ≤ αVg(t) for
any type profile t.

2. CONNECTING APPROXIMATION AND
INCENTIVES

Suppose that, somehow, we have an approximation bound
for g that is a known function of α(t) for all t ∈ T . In the
most trivial case, it could be just a fixed α, reducing the
setup to the worst-case above. Alternatively, we may be able
to split the set of type profiles into subsets T 1, T 2, . . ., and
obtain much better uniform bounds on some of these subsets
than the worst case analysis would allow; for example, per-
haps we know that for some large subset of combinatorial
auction problems we can compute optimal allocation fast
exactly, or nearly so. In any case, presently we will see that
we need not even construct α(t) for all possible type pro-
files, but can obtain probabilistic bounds based on a subset
of these.

Theorem 1. Suppose that the algorithm g is an α(t)-
approximation. Then truthful reporting constitutes an ε-

Bayes-Nash equilibrium for ε = nEt

h
α(t)−1

α(t)
V ∗(t)

i
.

3. APPLYING THE NON-UNIFORM INCEN-
TIVE BOUND

A key question that stems from the above analysis is how a
mechanism designer would determine an incentive bound for
his algorithm in practice. We would not, for example, want
to require the designer to obtain a non-trivial α(t) for every
t ∈ T . Rather, we offer the following empirical approach.

1. Obtain or construct a simulator that allows one to sam-
ple joint player types t ∈ T according to F

2. Collect a set of K joint type samples t1, . . . , tK

3. For each tk, compute Vg(tk) and V ∗(tk) (or an upper
bound on V ∗(tk))

1479

1479-1480



0 10000 20000 30000 40000 50000 60000

Time Limit (seconds)

0

0.002

0.004

0.006

0.008

0.01

0.012

B
ou

nd
 o

n 
M

ax
im

al
 R

eg
re

t

1K-256
varsize
2K-64

Figure 1: Worst-case bound of the regret, as a frac-
tion of nV ∗

4. Compute α(tk) = V ∗(tk)

Vg(tk)
, let Ẑ(tk) = α(tk)−1

α(tk)
V ∗(tk),

and define Ẑ = 1
K

PK
k=1 Ẑ(tk)

5. Compute a probabilistic bound based on Ẑ

For the last step, we assume that Ẑ is Normally distributed
(an assumption that is justified by the Central Limit Theo-

rem when K is large), using s2(Ẑ(tk))/K (where s2(·) is the

sample variance) as an estimate of the variance of Ẑ. Then,

Et

h
α(t)−1

α(t)
V ∗(t)

i
≤ Ẑ + zδ

q
s2(Ẑ(tk))

K
w.p. ≥ 1 − δ, where

zδ is the value of Normal distribution at 1 − δ.

3.1 Example: Combinatorial Auctions
To illustrate a concrete example applying the techniques

introduced above, we now offer an incentive analysis of com-
binatorial auctions based on auction instances (in our nota-
tion, tk) generated by CATS [3]. Since the absolute values
of bounds are not very meaningful, and, further, CATS gen-
erates a set of bids, but does not specify the number of
players (which could therefore be arbitrary), we opt to re-
port bounds as multiples of nV ∗. In doing so, we lose some
tightness in the bounds, which we partially recover by letting
Ẑ′ = Ẑ/ maxk V ∗(tk). Below we report Ẑ′.

The data set we used is composed of (a) a set of samples
with 1000 bids on 144 goods (1K−144), (b) a set with 1000
bids on 256 goods (1K−256), (c) a set with 2000 bids on 64
goods (2K − 64), and (d) a set with varying problem sizes
(varsize). Each set contains 5000 samples, 500 for each of 10
different distributions. The data includes the result obtained
by CPLEX which ran to optimality, the results obtained by
CASS after about 7500 seconds for 1K − 144 and 1K − 256,
or 44000 seconds for the other datasets, and, for the dataset
1K − 256, also the result obtained by the Gonen-Lehmann
(GL) algorithm [2].

We computed the bound on regret for each dataset, as well
as for the union set (named all). For each one we include
the data for all CATS distributions except the arbitrary one.
For g(t) we used the following combination: we used the
result returned by CPLEX for a sampled profile tk if it was
obtained in at most S seconds; otherwise the result returned
by CASS was used. We varied the timelimit S is between
500 and 60000 seconds (about 16.6 hours). Such time limits
could be reasonable for high volume auctions in which a lot
of money is at stake.

In Figure 1, we show the resulting bound for each dataset
as a function of the timelimit. It also quantifies the tradeoff
between the amount of time given to the algorithm and re-
gret (incentives for players to lie). The bounds are computed

10000 20000 30000 40000 50000 60000

Time Limit (seconds)

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

B
ou

nd
 o

n 
M

ax
im

al
 R

eg
re

t

Figure 2: Worst-case bound of the regret for the
union set of data, as a fraction of nV ∗.

as explained above, with confidence level 1 − δ = 0.95. The
results are particularly encouraging for the union set (Fig-
ure 2), and 1K − 256, for which the regret approaches zero
when the timelimit increases.

4. COMPUTING A BETTER RESPONSE
In this section we suggest a very simple sampling tech-

nique which allows us to amplify complexity of the devia-
tion problem on average, under some assumptions on the
algorithmic capabilities of the mechanism participants. Our
first result reflects an assumption that the designer can con-
struct a belief over the algorithms which would be used by
each player. Under this assumption, let designer use his be-
lief distribution over the algorithms to obtain L (random)
instances of deviations t′i for each i. Let T ′

i ⊂ Ti be the
set of L such draws, as well as the reported type ti. Let
g′

i(t) = arg maxo=g(t′i,t−i)|t′i∈T ′
i

P
j∈I vj(tj , g(t′i, t−i)) and let

g′(t) = arg maxi∈I g′
i(t).

Theorem 2. Given g′(t) as the allocation mechanism,
the probability that some player can compute an improving
deviation is at most n

L+1
.

While the assumption that algorithmic capabilities of play-
ers are predictable is often reasonable, we may wish to make
a stronger statement. Let G(u) be the distribution function
of player utilities induced by the designer ’s search process
(e.g., uniform sampling from the type space), whereas H(u)
is the distribution function of player i’s utilities induced by
the player’s search.

Theorem 3. Let U1 = {u|G(u) = 1} and suppose that
H(U1) = 0. Then limL→∞

R
G(u)LdH(u) = 0.

The interpretation is that as long as the players do not have
a positive probability of reaching a utility that is better than
any that the designer can possibly attain, the designer can
use random sampling to effectively eliminate incentives to
lie.

5. REFERENCES
[1] Peter Cramton, Yoav Shoham, and Richard Steinberg,

editors. Combinatorial Auctions. MIT Press, 2006.

[2] R. Gonen and D. Lehmann. Linear programming helps
solving large multi-unit combinatorial auctions. In Electronic
Market Design Workshop, 2001.

[3] Kevin Leyton-Brown and Yoav Shoham. A test suite for
combinatorial auction. In Cramton et al. [1], chapter 18,
pages 451–478.

[4] Andreu Mas-Colell, Michael D. Whinston, and Jerry R.
Green. Microeconomic Theory. Oxford Univ. Press, 1995.

1480


